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1. Introduction
Systems of second order quasilinear parabolic differential equations
where also the main part contains functional dependence on the unknown

functions were studied e.g. in [1] by L. Simon. There the following equation
was considered:

Dtu(t,x)—zDi[ai(l‘,x,u(t,x),Du(t,x);u)]+a0(l‘,x,u(t,x),Du(t,x);u)=
i=1
=f(t,x)  (1,x) € Qr=(0,T) xQ, a;: Qr x K™ x [P(0,T; V) — R,

where V denotes a closed linear subset of the Sobolev-space wlp Q) 2<
< p < 00).

Let us now consider a system of this type of equations:

6]

n
D,u(l)(t,x) — ZD,- [ai(l) (t,x,u(l)(t,x), . ..,u(N)(t,x),
i=1

DuV(t,x), ..., DN, x);u®, ., u )] +
+ a(()l) (t,x, u D, x), ..., u™M,x),
DuV@,x),...,DuN @, x)ul, .., u(N)) -

= FO(t, x), t,x)€EQr=0,T)xQ, QCR', [=1,...,N.
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144 ADAM BESENYEI

In the next section we define the weak form of the above system and formulate
conditions on the coeflicients. With these we can prove existence of weak
solutions. The conditions are generalizations of the classical Léray—Lions
conditions for systems with some special conditions for these type of systems.
Finally we show some examples.

2. Existence of weak solutions

First we introduce some notations. Let Q C R" be a bounded domain
with the C! regularity property and 2 < p < oo be a real number. Denote by
wlp (€2) the usual Sobolev space of real valued functions with the norm

1
rwu=(/QDMP+WWQ”.
Q

Let V; C WlP(Q)( =1,...,N) be a closed linear subspace (e.g. Wol’p(Q)

or WhP(Q)) and let V = Vi X --- x Vn. Denote by I”(0, T; V) the Banach
space of measurable functions u: (0, T) — V such that ||u||P is integrable and
define the norm by

T
me@nm=A @, dt.

The dual space of IP(0, T; V) is L1(0, T; V*) where }7+é =1and V*is the
dual space of V. Let X =IP(0,T; V)and Y = LP(0, T; (LP(Q)N). Foru €
€ X we shall write u = uD,...,u®™), where u) € 17(0, T; Vi). A vector
£ € R®*DN g written in the form & = (€0, &), where & = (Cél), ... ,C(()N)) €
e RN and ¢ = €WD,..., Ny e BN, Here ¢ = (Cil),..., ,(11)) € R,
Now we formulate 5 essential assumptions on functions al.(l) i=0,...,n;

[ =1,...,N), which (as we will see) are sufficient for existence of weak
solutions.

F1. Suppose that al.(l): Qr x RDN 10, T; V) — R are Carathéodory
functions for each v € IP(0, T; V). This means that they are measurable

in (z,x) for every (&o,&) € R**DN “and continuous in (£, &) for almost
every (t,x) € Qr (i =0,...,n;1=1,...,N).
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ON SYSTEMS OF NONLINEAR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 145

F2.

F3.

F4.

FS.

Suppose that there exist bounded operators g;: (0, T; V) — R* and
ki:LP(0,T; V) — L1(Qr) such that

0P ,x, 80,839 < 100 (Gl ™ + [P ) + [l )] (1,)
for a.e. (t,x) € Qp, each (§y,8) € R®*DN and v € IP(0,T; V)
(i=0,...,n;l=1,...,N).

Suppose that for each§ = n € R*N ae. (t,x) € Q, each Co € RN and
eachv € IP(0,T; V)

N n
S (a5, Lo, Esv) — al e G0 ) € =0 > 0.

=1 i=1

Suppose that there exist operators g,:IP(0,T; V) — R' and ks:
IP(0,T; V) — LY(Qp) such that

N n
SN aPx,80.5:v)E" > g20) ([5olP + GIP) — Tho()](2,x)
=1 i=0

for a.e. (t,x) € Qr, each (£y,&) € R**DN andy € IP(0, T; V) (i =
=0,...,n; [ =1,...,N). Further, operators g, kp has the following
property:

sz(v)HLl(QT)) ¥
———=2 | =+00.

. p—1
o &NMMW@ﬁW_HWUmTW

Vllp 0,15 vy =20

Suppose that if upy — wu weakly in LP(0,T; V) and strongly in
L2 (0, T3 (LP(@)N), then

Jdim a7 (), D)) = af ) u O, Dug () |2y = 0.

(i=0,....,n;1=1,...,N)
We now define the weak form of system (1). Let us introduce first

the operator A: LP(0,T; V) — L9(0,T; V*). For u = @D, .. u®™y e
e [P0, T;V)yandv = (v, ...,vV)) € [P(0, T; V) define
[A(u),v]:=

2/ [Za(” t x,u(t,x), Du(t,x);u)D; v 4
i=1
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146 ADAM BESENYEI

+ aé(z‘,x, u(t,x), Du(t,x); u) v dtdx,

where D; denotes the operator of (distributional) partial differentiating with re-
spect to x; and D = (Dy,...,Dy). As usual let L: I”(0, T; V) — L91(0, T; V*)
be the following operator:

D(L)={u € X: Diu € X*,u(0) =0}, Lu = D;u.
With operator A we define the weak form of system (1) by
Dyju + A(u) = F.

In the next theorem we prove some important properties of A from which
existence of weak solution follows.

THEOREM 1. Assume that conditions F1-F5 are fulfilled. Then A: X —
X* is bounded, demicontinuous, coercive and pseudomonotone with respect
to D(L).

PROOF. The proof is based on elementary techincs and on Hélder’s
inequality.

BOUNDEDNESS. From triangle inequality it is clear that it is sufficient to
deal with only one integral in [A(u),v]. This can be estimated by Hdélder’s
inequality:

) ‘/ a2 (t,x, u(t,x), Du(t,x);u) Dy D(e, x)drdx | <
Qr

q p
g(/ |ai(l)(t,x,u(t,x),Du(t,x);u)|thdx> (/ |D,-v(l)(t,x)|pdtdx> .
Qr Qr

(In case i = 0 we replace D;v) by v(!).) On the right hand side of (2) the
second term is less or equal than ||v|| x and the first term can be estimated by

the inequality |a +b|” < 2"~ . (la|" +|b|"):
1
0] -4 !
3) (/ la; " (t,x,u(t,x), Du(t,x); u)| dtdx) <
Qr

< const - (/ [gl(u)q (|u(t,x)|(p_1)q + |Du(t,x)|(p_l)q> +
Qr
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ON SYSTEMS OF NONLINEAR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 147

Q[

+ |[k1(u)](f,x)|q] dtdx) <

1
q
< const - |g1(u) </ lulP + |Du|p> + </ |k1(u)|q> =
Qr Qr

P
=const - <g1(u)]|u]|;’( + Hkl(u)HL‘I(QT)) .

Q|

Summing the above estimations with respect to i and [ we get:

P
LA, V1| < consi - <g1<u>||u|| 0y ||k1<u>r|Lq<QT)) Ivilx.

P
This means that || A(u)|| x* < const - <g1(u)]|u]|;’( + ||k1(u)]|Lq(QT)> . From

here by boundedness of operators g; and k; follows the boundedness of A.

DEMICONTINUITY. Assume that u;, — u strongly in X. Then there exists
a subsequence (i) C (uy), such that (i) — u and (Diiy) — Du for a.e.
(t,x) € Qr. We show that for each v € X we have [A(ii;) — A(u),v] — 0,
then using the subsequence trick the proof of demicontinuity will be finished.

It is useful to introduce operator A, X — X* (u is fixed) defined by

N n
(A, (), w] :=Z/Q [Zaf”(r,x,va,x),Dv(r,x);u)D,-w”)(r,x)+
=1 T Li=1

+ a(()l) (t,x,v(t,x),Dv(t,x); u)w(l)(t,x) dtdx.

We prove that A(ii;) — Ay (i) — 0 and A, (i) — A(u) — 0 weakly in X*.
It is easy to see (from triangle and Holder’s inequality) that it is sufficient to
show

@ a¢ (), Dig (i) — al (i (), Ditge ()| za @) — O
and
&) NaC @O, Digu) — aP ¢ uC), DuCyw) oy — 0.

The strong convergence in X implies the weak convergence in X, and be-
cause of the continuous imbedding X — Y it implies the weak convergence
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148 ADAM BESENYEI

in Y, too. So that from F5 it follows that (4) is true indeed. On the other
Q)

hand, from condition F1 we know that a;"" is continuous in (€0, &), hence

a(t,x, i (1,%), Dig (t,x);u) — a(t,x, u(t,x), Dut,x);u)
for a.e. (f,x) € Qr, by the almost everywhere convergence of ii; and Diij in
Qr. Further,
a0 (@, x, g (2,%), Dig (8, %); )| <
< g1)? (|ig (t,x)P + |Dig (1, 0)|P) + |k (w)1(2, )4 = fi (2, %).
Since (ii;) is convergent in X, (f;) is convergent in Ll(QT), consequently

equiintegrable in LI(QT), too. Hence functions al.(l)(- 0 (+), Diig (-);u) (k €
€ N) are equiintegrable in L?(Qr). Then by Vitali’s theorem we have

Jim a0, D)) = af ' ), DuCy:wl|acop) = 0.

REMARK. Observe that we have shown also the following facts:
A(i) — Ay (i) — 0 weakly in X* and [A() — Ay (i), vl — 0, if ()
is a bounded sequence in X.

COERCITIVITY. From condition F4 we get

[A(u), u] Z/Q [g2)|ut, )P + [Du(t,x)|P — [kp(u)(t,x)] dtdx =
T

= g)lully = Ikl 10
thus using F4 again we obtain

[Au), u]

1 kGl
lim ———— > klim [gz(u)HMHf;( LG 0N
—00

= +00.
lullx—oo  [lullx [lull x

PSEUDOMONOTONICITY. Let us suppose that
(6) (u) —u weaklyin X and (Dju)— Dyu weakly in X*,
further
@) lim sup[ A(uy ), uy —u] <0.

k—o0
By using the subsequence trick it is sufficient to show that for a subsequence
(i) C (ug)
klim [Aig), i, —u]=0 and A(ig) — A(u) weakly in X,
— 00
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ON SYSTEMS OF NONLINEAR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 149

Since the imbedding wlrQ) — 1P(Q) is compact and (i) is bounded in X
and (Duy ) is bounded in X™* by its weak convergence, hence from the well
known imbedding theorem (see [4]) there exists a subsequence (i) C (uy)
such that ity — u in Y. Then by using the above remark we obtain

() lim [A(iy) — Ay (i), d — ul = 0.
k—o0
Comparing this with (7) it follows that

9) lim sup[ Ay (dig ), i — u] < 0.

k—o0

We know that A, is pseudomonotone with respect to D(L) (see [2]), hence
from conditions (6) and (9) we get
(10)

kli)rgo[Au(ﬁk), iy —ul=0 and A,(ii;) — A,(u)(= A(n)) weakly in X*.

From this, by using (8) we have klim [A(iy ), it — u] = 0. On the other hand,
— 00

we have shown in the proof of demicontinuity that Ay (i) — A(i) — 0
weakly in X™*, so that by using the second part of (10) we obtain A(i;) —
— A(u) weakly in X™*. This completes the proof. |

COROLLARY 1. For every F € X* the equation
Diu + A(u) = F, u(@)=0
has got a solution u € D(L).
PROOF. Since operator D is closed, linear and maximal monotone (see

e.g. [5]), therefore the statement follows from the preceding theorem and
theorem 4 in [3]. |

3. Examples

In this section we deal with a general form of functions al.(l) which fulfil

conditions F1-F5. In the end we show some concrete examples.

2005. marcius 9. -23:21



150 ADAM BESENYEI

3.1. General case
Suppose that function ai(l)(t,x,CO, C;v) has the form:
(0at,x,80,5:v) = [HOW)| 6,000 1,2,80,6) +
+[600)] (1, 00aV,x,60,8) if i # 0, and

(12)a(t,%,50,55v) = [HOW)| (0,000 (1,2,50,5) +

+ 6] e.0d . x,50.0),

where bgl), dl.(l), HU ), G ), G(()l) have the following properties.

K1. Functions bgl): Qp x R+DN R and dl.(l): Qr x R*+DN _ R has the
Carathéodory property. This means that they are measurable in (¢,x) for

every (§o,8) € RO*+DN and continuous in (o,C) for a.e. (t,x) € Qr
G=1,...,n;1=1,...,N).

K2. There exist constants ¢; > 0,0 < r < p — 1 and a function k; € L1(Qy)
such that

a) |61, x,80. 0| < c1(GolP ™ + 5171 + ki (2,0),
b) |, x,£0,6)] < e1([Gol” + 51"

for a.e. (1,x) € Qr and each (§p,8) € RW*DN (G =1, . n;1=1,...
..,N).

K3. Foreach § # 7

) Y 10 ,x,80,6) — bVt x, 8o — ) > 0,
i=1

n
) S 1d(t,x,80.8) — dPt,x, o, 1" 1) > 0
i=1
for a.e. (f,x) € Qrandeach &y e RN (I =1,...,N).
K4. There exist a constant ¢, > 0 and a function ky € L!(Q7) such that

0 Y 60,250,080 > 258 P + 16D P) — katr, ),
i=0

2005. marcius 9. -23:21



ON SYSTEMS OF NONLINEAR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 151

n
0 Y dP,x,50,05" >0
i=1

for a.e. (t,x) and each (§p,¢) € R**DN (1 =1,...,N).

K5.

a) The operator H O 17, T; (LP(Q)N) — L*>°(Qy) is bounded and
continuous such that for every ve? (0, T; (L (Q))N )
[HOW)(t,x) > c3 > 0 holds for a.e. (t,x) € Qr.

b) The operators GO, G(()l):Lp O, T; (LP(Q)N) — Llﬁ (Qp) are
bounded, continuous where r is given in K2/b. Further, for each
v € IP0, T; (IP(Q)N) we have [GD(1)](t,x) > 0 for ace. (t,x) €
€ Qr and

Jo |G(§”(v)(t,x)|zﬁdrdx
(13) lim r =0, I=1,...,N.
VIl zp 0, 7; vy =00 ||V||117p(0,T;V)

CLAIM 1. Assume that conditions KI1-K5 hold. Then functions defined
in (11), (12) satisty conditions FI1-F5.

For the proof we need a technical lemma.
LEMMA 1. Let us introduce the following operators:

N
[HW,x) =Y [IHO )], x)|
=1

N
[GOI,x) =Y [[GP W), x))
=1

N
[GoI(t,x) =Y [[Gg )1t x)].
=1
Then operators H, G and Gy fulfil the conditions formulated in K5 on H®,
G\ and G(()l), respectively.

PROOF OF LEMMA 1. We have to prove only (13) which follows easily by
estimating the integrand by |a + b|* < 25~ 1(|a|* + |b]®). |
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152 ADAM BESENYEI

PROOF OF CLAIM 1.

ConpITION F1. From K1 obviously follows F1.

ConDITION F2. Let i > 0 and r > 0. It is obvious that
IHO 1,061, x,80,0)] <

< NH®) oo(p) (6‘1 (|Co|p_1 + |C|p_l) +k1(t,X)) :

On the other hand by using Young’s inequality with conjugate exponents

= pli+il we get

1<p1=%l<ooandql
(14) [[GP N, x)d (1, x,80,0)] < GO, x)d (1,80,

_ x50, D , 1600
- p1 a1 '
Estimating by K2/b and |a + b|* < 25~ !(|a|® +|b|*) we obtain

LGP, x)d " (1,x,80,0)| < const - ([Go|P1 + [E]"P1 + (GO, x)|71)

(15) = const - (|§0|P—1 +EPly |[G(v)](t,x)|q1) .

Combining the above estimations we have

a1 t,%,80,8:9)] < const - | (IHM oo +1) (1GoP ™" + 1P~ ) +

+ | HO)| Lok (7,3) + |[G(v)](t,x)|q1] .

By the boundedness of operator H and by the continuous imbedding X — Y
we have that ||H(-)||zoo(@,) is @ bounded X — R* functional. Further, from

ky € Lq(QT) it follows that ||H()||L°°(QT)kl is a bounded X — Lq(QT)

operator. Observe that g1q = p_’: — so that

(16) / (|[G(v)](t,x)|q1)thdx=/ |[G(v)](t,x)|1’f;*1dtdx
Qr Qr
p

p—r—1
= <||G(V)|| _p ) :
Lr=r=1(Qp)

Due to boundedness of G this means that |G(-)|9! is a bounded X — L7(Qr)
operator.
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Now let r = 0. Observe that g; = 1, moreover from K2/b we have

|dl.(l)(t,x,§0,é)| < 2c¢;. So in this case we also have an inequality similar
to (15):
IGD I, 0)d (1, x,80,0)| < const - [[GW)I(t,x)|1,

This means that this case can be treated in the same way. This completes the
proof in case i > 0. Case i = 0 is the same, we only have to replace G by Gj.

CoNDITION F3. Using condition K3 and K5/a we get for § # g

N n
S (a2, 80,85v) — aP e, x, 8o, ms ) € - ) =

=1 i=1

HOWIE0 D (500,580,061 ,x,80m) € = 1)+
i=1

M=

l

I
—_

N n
+ 1600 Y (A ,x,80.0) — dP e x,8o,m) € =) > 0.
=1 i=1

CoNDITION F4. Taking into account conditions K4 and K5 we obtain

N n N
an - >3 alext.one =Y [HO0)] @0

=1 i=0 =1

n N n
b5, 80,06 + 37 [V 6,0 dPx, Lo, 05+
=0

l=l l:l

G 0] 0dg 2,80, 0080 >

e

~
I
—_

p P
362 (‘C(()l)‘ + ‘C(l)‘ ) — c3kp(t, x)+

] =

2
!

1l
—

N
#3166 0] wdi e Lo, 0E” >
=1

> cyc3¢s (|GolP +[5IP) — c3Nky(t,x)+
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N
#3165 0)] @0 380,05,
=1

In the last estimation we used inequality |a + b* < 25~ 1(|a|* + |b|%). Put
¢’ = c4c3c9 and investigate only the terms in the last sum. Let ¢ > 0 be fixed

p ! . . .
a constant such that % < 3C—N, and use the e-inequality with exponents p, g.

Then we have
a8) 16 010y (1,380,008 <
< 1GoMIe, 1)y 0, .80, 805 <

p —-q
e+ G 3. L0, DI

IN

The first term in the right hand side of (18) is less or equal than % (|C0 P +

+ [P ) In the second term using the ¢-inequality with ¢ > 0 (defined later)
and exponents pq, g similarly to (14), (15), the following estimation holds:

19 |[6’®)] @ 0dPx,50,0|" <

< const - (Mpl (|§0|p—1 + |§|P—1> +;¢_‘11|[Go(v)](t,X)|QI>q <
<Pt ([Gol” +[E1P) + T T N[ Go()(e, ) 119

HuP14e—4 !

Let 4 be such that < 3C—N Then substituting (18) and (19) into (17)

N n
SN e, x, 80,5 >

=1 i=0
!/
c
> 3 (1Gol” +[E) = (c3Nky(t, x) + Nd"|[ Go()](z, )| 1)
=Th)](1.x)
where h(v) € LI(QT) following from (16) (and kp € Ll(QT)). Moreover

P
||h(v)HL1(QT) < C3N||k2||L1(QT) +Nd* /Q [[GoW)I(t,x)|P~r—Tdtdx.
T

From the lemma we know that Gy fulfil (13), hence

ROl
. -1(c L'(Q7)
lim vl (——7T =

lIvll x —o0 3 v {5
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ON SYSTEMS OF NONLINEAR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 155

ConpITION F5. Let r > 0. Suppose that u; — u weakly in X and
strongly in Y. Then (u;) is bounded in X. Therefore from K2/a follows that

bgl)(- ,up (), Dui(+)) (k € N) is bounded in L9(Qr), since it is easy to see
(similarly to (3)) that

/ |b§l)(faxauk(t,X),Duk(t,x)|‘1dtdxg
Qr

< const - / [|uk(t,x)|(p_l)q + [Dug (1,)| P~V 4 |ky (2, x)| | drdx <
Qr
< const - (||”k||§( + ”le%‘I(QT)) <K.

Further observe that di(l)(- , up(+), Duy(+)) is bounded in LIF’(QT), since by
K2/b

/ |di(l)(t7-x7 uk(f,x),Duk(t,X))ﬁdtdx <
Qr

< / [|uk(z,x)|r? + |Duk(t,x)|”r7] drdx = |ug | < K.
Qr

Hence

/ |(LH P )1, x) — TH O @)1, x )bVt x, wi (8, %), Dug (1, x)|1drdx <
Qr

< ||H(”(uk)—H”)(u)!l‘{oo(QT)/Q 6t x, ug (2, %), Duy (1, x))|9dtdx <
T

< K|HD ) - HOw)| o 0p) — 0,

by using the continuity of H). On the other hand, Hélder’s inequality with
exponents pq, q; shows that

/ (LGP w1, x) — 1GP @@, x)d D, x, ug (1,%), Dug (1,x))|9dtdx <
Qr

1
0 _p_p=l Py
< / |d;" "t x, ug (t, x), D (t,x)|P=1 7 dtdx .
Qr

-1 q1
( / I[G”)(uk)](r,x)—[G<’>(u>](r,x>|ﬁpprldtdx> '
Qr
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p—r—1

1
< KP1 ||G(l)(uk) _ G(Z)(M)H Pp -0,
LP=r=1(Qp)

since G¢) is continuous. This means that
20) la ¢ ug (), Dug (s ) — al ¢ ug (), Dug (s )l Lacopy <
< NHD ) — HO@)DC uge (), Dug (Dl zacop) +
+ (6P ) — GP@Nd ¢ u (), Dug (Dl racop) — 0.
If r = 0, then the first term on the right hand side of (20) tends to 0. Since

_lr’_ 1 = ¢ (hence G maps to LI(Q7) continuously) and |b§l)(t,x,§0,§ )| <

p
< 2cy, so that

GO ) — GPUNdD (-, e (), Dug (Nl gy <
< 2¢1|[(GP ) — GV W)l La(op — O-
Hence the second term in the right hand side of (20) tends to 0, too. Case

i =0 can be treated similarly, replacing G by G(()l).

3.2. Concrete examples
3.2.1. Operator H")

Let ¢: R — R be a continuous function such that ¢ > ¢ > 0. Let us
introduce the following operators on I (0, T; (I (Q))V):

N

L 0)1(t,x) = b / S hpy® | where by € L1Qp) (1<) < N),
Qi
j=1

[H,(W](t,x):=¢ {/ |v|a] , where 1 <a <p.
o

CLAIM 2. The above H; and H, fulfil condition K5/a.

PROOF. We prove only the case of Hj, the other can be made by similar
techincs. From Holder’s inequality we know that ijg) € LI(QT), so that
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FII is well defined, and obviously I:11(V) > ¢ > 0. On the other hand, if
IIvlly < K then we have

N . N ) N
/ Y by P < Z/ by < K> b llLacop)»
=1 j=170r j=1
from where by continuity of ¢ follows that H; maps to L>°(Q7) and it is
bounded indeed. Further, if (v;) — v in LP(0, T; (LP(Q))N) then we have

N 0 N ‘
/ 2 b —/ > by <
QTj:l QI j=1

£ ()

J=1

1
. . p
</ |v,§’> —v(’)|p> — 0,
Qr

therefore by continuity of ¢ it follows that H (v) — H;(v) in L*®(Qr).
This completes the proof of continuity. |

3.2.2. Operators G, G(()l)

Let :R — R be a continuous function such that [y (y)| < const -
- ly[P~"0~! holds for some 0 < ry < p — 1. Let us introduce the following
operators on LP(0, T; (I (Q)N):

¢t N
[GLOI(E,x) = / > a;@,x)w D, x)dr
0

j=1
~ N .
(G2, x) = /Q > a1, E v, 6)dé |,
j=1
where a; € L(Qr) (1<j < N),

1
t a
[G3(W)](t,x) =y {/ |v(‘r,x)|ad‘r} , where 1 <a <p.
0

CLAIM 3. The above G; fulfil conditions made on G(()l) in K5/b with
0 <r <ry. dfy >0, then obviously the nonnegativity condition is fulfilled,
too.)
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PROOF. We show only the case of operator G;. Letbe 0 < r <rg <p—1
then from properties of i it is obvious that

/ I[G1(V)](t,x)|1’*€*1drdx§
Qr

N T ph
< const / Z/ ]|aj||Loo(QT)|v(i)(T,x)|dr dtdx <
Qr \j=1 70

N T ph
< const - / Z/ |v(t,x)|dT dtdx =
Qr \ j=1 70

T pA
=const - / </ |v(‘r,x)|d‘r> dtdx,
Qr \/0

ol By using Holder’s inequality with exponents

—r—1

where 0 < A =

=1 —_P1 -
p1=7(>1)and g; = 575 we obtain:

T ph
/ </ |v(t,x)|dt> drdx <
Qr \7/0
A
T phy i
< const - / / lv(r,x)|dt drdx | - / 11 =
Qr \/0 Qr
T p A
= const - (/ (/ |v(r,x)|dr> dtdx)
Qr \7/0

Now we may estimate again by Holder’s inequality and after that we may use
Fubini’s theorem. We get

p

T
/ </ |v(t,x)|dt> drdx <
Qr \/0
1 17P
T p T q
S/ (/ |v(r,x)|pd‘r> (/ lqd‘r> dtdx =
Or 0 0
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T
= const - / / |v(r,x)|Pdrdxdt = const - / v(t,x)Pdtdx < const - ||v|/.
Qr 0 Qr

Summarizing the above estimations one gets
~ _p y
/ [[G1(W)](t,x)|P~7—1dtdx < const - ||v||§(
Qr
From this it is easy to see that G; is a bounded operator which maps to
P
Lp—r=1(Qr). Further

~ p
Jop G101, x)|P~7=Tdrdx

= dim  |E* V=0

vl x —o0 Iv]5 lIvll x —o0

2

since A — 1 < 0. Continuity of the operator can be proved similarly to the
previous theorem.

REMARK. From lemma it is easy too see that linear combinations of the
above operators fulfil condtitions K5/a and K5/b, too.

3.2.3. Functions b\", a"
We show the well known examples. Let bgl)(t,x, Co,C) = Bfl)(t,x, ¢o» Cl.(l)),

where I;El): Qr xRN *l L Risa Carathéodory function such that the follow-

ing hold. Function C,-(l) — El(l)(t,x, CO,C,-(I)) is strictly increasing,

p—1
&) ) Fky(6,0),

~(l [ —
b (1x20. ") <1 <|co|” L
and

3 P

B (i) 60 2 o O —

where ¢y > 0, ky € L1(Q) and kp € Ll(QT). Then bl@ obviously fulfil

K1, K2/a. K4/a follows by inequality |a + b|* < 25~!(|a|* + |b|*) and K3/a
follows from monotonicity.

Similarly, let d"(t,x,80,5) = d"t,x,80,8") G 2 0) where
31.(1): Qr x RN 1 L Risa Carathéodory function such that the follow-
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ing hold. Function Cl.(l) — c?i(l)(t,x,éo,éi(l)) is monotone nondecreasing,

d"(t,x,8,0) = 0, and

a® (r,x,Co;Cf”)‘ <cj <|Co|r +

,
&)+,

where k; € LY(Qr) and 0 < r < p — 1. If i = 0, then let d{’ be a
Carathéodory-function which satisfies

4 1,x,80.0)| < 1 (Gl +[517) + ki),

Then conditions K1, K2/b, K3/b obviously hold. To prove K4/b we only have
to observe that (if i = 0) 31.(1)(t,x,§0,éi(l))éi(l) > 0.

REMARK. The simplest examples for the above general conditions are
¢ gPiePp=2 and ¢V o cPEOr Vi r > 0.1 r =0 letd” = 0
and d’ = 1.
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