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Main problem Setting of the problem

Main problem

Definition

A matrix P = (pjk)nj,k=1 is called stochastic if pjk ≥ 0 for every j , k = 1, . . . , n,

i.e., P is nonnegative, and
n∑

k=1

pjk = 1 for every j = 1, . . . , n, i.e, the sum of the

entries in each row equals 1.

Question (Kolmogorov, 1938)

Denote

Mn := {λ ∈ C : λ is an eigenvalue of some n × n stochastic matrix}.
Determine (or describe) the domain of eigenvalues Mn in the complex plane.
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Main problem Some observations

Some observations

Trivial observations

• 1 ∈ Mn for all n since P1 = 1 where 1 denotes the vector with all entries 1.

• Mn is symmetric with respect to the x axis and Mn ⊂ {|z | ≤ 1} since

‖λv‖∞ = ‖Pv‖∞ ≤

(
max

j=1,...,n

n∑
k=1

|pjk |

)
· ‖v‖∞ = ‖v‖∞.

The expression ‖P‖∞ = maxj=1,...,n

∑n
k=1 |pjk | is the so-called row norm of P

induced by the vector norm ‖ · ‖∞.

• Mn ⊂ ∪nj=1B(ajj ,Rj) where Rj =
∑

k 6=j |ajk | = 1− ajj .

Therefore, Mn ⊂ B(min ajj , 1−min ajj).
These are the so-called Gershgorin discs.
(Semyon Aronovich Gershgorin (1901–1933))
(Maurice René Fréchet (1878–1973) ??)

1

• M2 = [−1, 1] since the eigenvalues of P =

[
p 1− p
q 1− q

]
are 1 and p − q.
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Á. Besenyei (ELTE Budapest) May 5, 2014 4 / 32



Main problem Some observations

Some observations

Trivial observations
• 1 ∈ Mn for all n since P1 = 1 where 1 denotes the vector with all entries 1.

• Mn is symmetric with respect to the x axis and Mn ⊂ {|z | ≤ 1} since

‖λv‖∞ = ‖Pv‖∞ ≤

(
max

j=1,...,n

n∑
k=1

|pjk |

)
· ‖v‖∞ = ‖v‖∞.

The expression ‖P‖∞ = maxj=1,...,n

∑n
k=1 |pjk | is the so-called row norm of P

induced by the vector norm ‖ · ‖∞.

• Mn ⊂ ∪nj=1B(ajj ,Rj) where Rj =
∑

k 6=j |ajk | = 1− ajj .

Therefore, Mn ⊂ B(min ajj , 1−min ajj).
These are the so-called Gershgorin discs.
(Semyon Aronovich Gershgorin (1901–1933))
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Main problem Some observations

Some challenging observations

Proposition (try to prove!)

M3 = [−1, 1] ∪∆ where ∆ is the triangle with vertices 1, exp( 2πi
3 ), exp(− 2πi

3 ).

1

e
2πi

3

e−
2πi

3

−1

Proposition (try to prove!)

If |λ| = 1 for some λ ∈ Mn, then λ = exp(2πi pq ) where 0 ≤ p ≤ q ≤ n are
integers, i.e., λ is a vertex of a regular q-gon inscribed in the unit circle, one of
whose vertices is situated at the point 1.
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Main problem Some observations

A highly non-trivial observation

Proposition (try not to prove!)

Let A = (ajk)nj,k=1 be a stochastic matrix and akk , a`` be the two smallest diagonal
entries. Then the eigenvalues of A lie inside or on the boundary of the Cassini oval

|z − akk | · |z − a``| ≤ (1− akk) · (1− a``).

If akk 6= a``, then this oval lies in the interior of the largest Gershgorin circle,
otherwise the two curves coincide.
(This nice result is due to Alfred Theodor Brauer (1894–1985) from 1952.)

0
1akk a``
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Main problem History of the problem

History

• Vsevolod Ivanovich Romanovsky (1879–1954) a mathematician and
statistician, professor at the Central Asia University in Tashkent

• 1931 the term stochastic matrix was introduced
• 1936 survey on stochastic matrices (using results of Oskar Perron (1880–1975)

and Ferdinand Georg Frobenius (1849–1917) on nonnegative matrices)

• Andrey Nikolaevich Kolmogorov (1903–1987)

• 1938(?) problem of possible location of eigenvalues of stochastic matrices
• 1944–1945 Moscow State University seminar on Markov chains

• Nikolai Aleksandrovich Dmitriev (1924–2000),
Eugene Borisovich Dynkin (1924–)

• 1945 a geometrical reformulation of the problem (both students that time!)
• 1946 description of Mn for n ≤ 5

• Fridrikh Israilevich Karpelevich (1927–2000) (student of Dynkin)

• 1949, 1951 complete description of the domain Mn
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Main problem Results from 1945

The results of the 1945 paper

Theorem (Geometrical reformulation)

The number λ ∈ C is an eigenvalue of some n × n stochastic
matrix if and only if there is a convex q-gon Q in the complex
plane with number of vertices q ≤ n such that λQ ⊂ Q.

Theorem (Partial description of Mn)

The number λ ∈ C such that − 2π
n ≤ arg λ ≤ 2π

n is in Mn if and
only if it is contained in the quadrilateral whose vertices are the
points 0, exp(− 2πi

n ), 1, exp( 2πi
n ).

Theorem (Eigenvalues of stochastic generators)

The domain of eigenvalues of n × n matrices A = (ajk)nj,k=1

such that ajk ≥ 0 for j 6= k and
∑n

k=1 ajk = 0 for all
j = 1, . . . , n, is the cone π − (π2 −

π
n ) ≤ arg z ≤ π + (π2 −

π
n ).

Q

λQ

0
1

e
2πi
n

e−
2πi
n

π
2 −

π
n

π
2 −

π
n
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The results from 1945 Geometrical reformulation

The geometrical reformulation

Theorem (Geometrical reformulation)

The number λ ∈ C is an eigenvalue of some n × n stochastic matrix if and only if
there exists a convex q-gon Q in the complex plane such that q ≤ n and λQ ⊂ Q.
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The results from 1945 Geometrical reformulation

The geometrical reformulation

Theorem (Geometrical reformulation)

The number λ ∈ C is an eigenvalue of some n × n stochastic matrix if and only if
there exists a convex q-gon Q in the complex plane such that q ≤ n and λQ ⊂ Q.

Proof of the “only if” part.

Let λ be an eigenvalue of P = (pjk)nj,k=1 and z a corresponding eigenvector. Then

λzj = pj1z1 + pj2z2 + · · ·+ pjnzn (j = 1, . . . , n).

Since pjk ≥ 0 and pj1 + · · ·+ pjn = 1, therefore λzj
lies in the convex hull of the points z1, . . . , zn. Let
Q be this convex hull, then λQ ⊂ Q.

z1 z2

z3

z4

z5

λzj
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The results from 1945 Geometrical reformulation

The geometrical reformulation

Theorem (Geometrical reformulation)

The number λ ∈ C is an eigenvalue of some n × n stochastic matrix if and only if
there exists a convex q-gon Q in the complex plane such that q ≤ n and λQ ⊂ Q.

Proof of the “if” part.

Conversely, if λQ ⊂ Q for some convex polygon with vertices z1, . . . , zq, then λzj
lies in Q, thus we may choose pjk ≥ 0 such that pj1 + · · ·+ pjn = 1 and

λzj = pj1z1 + pj2z2 + · · ·+ pjqzq (j = 1, . . . , q).

For example, we may choose the barycentric
coordinates with respect to some triangle zα, zβ , zγ
for pjα, pjβ , pjγ , and pjk = 0 for other k .

z1 z2

z3

z4

z5

λzj
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The results from 1945 Consequences

Some consequences

Corollary

If λ ∈ C is an eigenvalue of a stochastic matrix, then |λ| ≤ 1.

Proof.

Let z ∈ Q be such that |z | is maximal. Since λz ∈ λQ ⊂ Q, it follows that
|λz | ≤ |z |, therefore |λ| ≤ 1.

Q
0

z
λz
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The results from 1945 Consequences

Some consequences

Corollary

A number λ ∈ C, |λ| = 1 is in Mn if and only if λ = exp(2πi pq ) where
0 ≤ p ≤ q ≤ n are integers.

Proof.

Let again z ∈ Q be such that |z | is maximal. Then z is some vertex of Q
(prove!). Since λz ∈ λQ ⊂ Q, thus λz , λ2z , . . . are also vertices of Q.
Consequently, λq = 1 for some q ≤ n, therefore λ = exp(2πi pq ), i.e., λ is a vertex
of a regular q-gon inscribed in the unit circle one of whose vertices is located at
the point 1. But such a regular q-gon multiplied by λ = exp(2πi pq ) coincides with

itself, so λ = exp(2πi pq ) is indeed an eigenvalue of some stochastic matrix.

Q

0 z = λ3z

λz

λ2z
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The results from 1945 Consequences

Some consequences

Corollary

The domain of eigenvalues Mn is star-shaped with respect to the origin.

Proof.
If λ ∈ Mn, then λQ ⊂ Q for some Q. We may suppose 0 ∈ Q otherwise there
exists a unique z ∈ Q such that |z | is minimal (prove it!). But then λz /∈ Q
except the trivial case λ = 1 when Q can be any polygon. Now since 0 ∈ Q, we
have for all 0 ≤ α ≤ 1 that (αλ)Q ⊂ λQ ⊂ Q, therefore αλ ∈ Mn.

Q

0

zλz

Q
λQ

αλQ

0
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The results from 1945 Minimal angle lemma

Towards the description of Mn

Lemma (minimal angle)

Let R be an arbitrary point in the interior of a convex n-gon A1A2 . . .An and
denote An+1 = A1. Then

min
k=1,...,n

RAkAk+1 ≤
π

2
− π

n
.

Equality holds if and only if A1A2 . . .An is a regular n-gon.

A1 A2

A3

A4

A5

R
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The results from 1945 Minimal angle lemma

Towards the description of Mn

Remark
Special cases of the lemma appeared many times:

• the case n = 3 (!) was a problem of the International Mathematical
Olympiad in 1991,

• the case n = 4 was a problem of a national contest in India in 1991,

• in the years 2000–2001 the Amer. Math. Monthly problems 10824 and 10904
also asked for the cases n = 3, 4 and possible generalization, and this latter
was marked as a yet unsolved question (but as we see, it was already solved).
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The results from 1945 Minimal angle lemma

Towards the description of Mn

Proof.
We prove by contradiction. Assume that ^RAkAk+1 > α for every k = 1, . . . , n
where α = π/2− π/n for brevity. Since ^RAkAk+1 > α, there is a point Nk on
the segment RAk+1 such that ^RAkNk = α. Denote by ψk the angle ^RNkAk .
Then the sine theorem in the triangle RAkNk implies

sinψk

sinα
=

RAk

RNk
>

RAk

RAk+1
.

The product of the above inequality for k = 1, . . . , n yields
sinψ1

sinα
· sinψ2

sinα
· . . . · sinψn

sinα
>

RA1

RA2
· RA2

RA3
· . . . · RAn

RA1
= 1,

therefore

sinψ1 · . . . · sinψn > (sinα)n.

Ak

Ak+1

Nk

R
α

ψk
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The results from 1945 Minimal angle lemma

Towards the description of Mn

Proof.
On the other hand

n∑
k=1

ψk =
n∑

k=1

(π − α− ^AkRAk+1) = n(π − α)−
n∑

k=1

^AkRAk+1 = nα.

But the product sinψ1 · . . . · sinψn in which the angles ψk satisfy

0 < ψ1 < π, . . . , 0 < ψn < π,

n∑
k=1

ψk = nα,

attains its maximum for ψ1 = · · · = ψn = α, so

sinψ1 · . . . · sinψn ≤ (sinα)n.

This follows from the inequality of arithmetic and geometric means, combined
with Jensen’s inequality for the concave sine function on the interval [0, π]:

sinψ1·. . .·sinψn ≤
(

sinψ1 + · · ·+ sinψn

n

)n

≤
(

sin

(
ψ1 + · · ·+ ψn

n

))n

= (sinα)n.
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The results from 1945 Description of Mn

Partial description of Mn

Theorem

A number λ ∈ C such that − 2π
n ≤ arg λ ≤ 2π

n is in Mn if and only if λ is contained

in the quadrilateral whose vertices are the points 0, exp(− 2πi
n ), 1, exp( 2πi

n ).

0
1

e
2πi
n

e−
2πi
n
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The results from 1945 Description of Mn

Partial description of Mn

Proof of the “if” part.

By star-likeness it suffices to show that any point of the segments [1, e
2πi
n ] and

[1, e
2πi
n ] may serve as an eigenvalue. Let z ∈ [1, e

2πi
n ], then the regular n-gon Rn

with vertices 1, e2πi 1
n , . . . , e2πi n−1

n multiplied by z is transformed into a polygon all
vertices of which are situated on the sides of Rn, therefore zRn ⊂ Rn.

0
1

z

e
2πi
n

e−
2πi
n
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The results from 1945 Description of Mn

Partial description of Mn

Proof of the “only if” part.

Let λ ∈ Mn be such that 0 ≤ arg λ ≤ 2π
n and let Y be a convex polygon with

vertices y1, . . . , yq (q ≤ n) such that 0 ∈ Y and λY ⊂ Y . By the lemma, there is
k such that ^yk+1yk0 ≤ π

2 −
π
n . Since w := λyk ∈ Y , therefore

^wyk0 ≤ ^yk+1yk0 ≤ π
2 −

π
n . But, ^wyk0 = ^λ10, thus ^λ10 ≤ π

2 −
π
n .

yk

yk+1

0

w

0
1

e
2πi
n

λ

Á. Besenyei (ELTE Budapest) May 5, 2014 19 / 32



The results from 1945 Stochastic generators

Eigenvalues of stochastic generators

Corollary

The domain of eigenvalues of n × n stochastic generators, i.e., matrices

A = (ajk)nj,k=1 such that ajk ≥ 0 for j 6= k and
n∑

k=1

ajk = 0 for all j = 1, . . . , n (in

other words, the sum of the entries in each row equals 0), is the cone

π −
(π

2
− π

n

)
≤ arg z ≤ π +

(π
2
− π

n

)
.

π
2 −

π
n

π
2 −

π
n
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The results from 1945 Stochastic generators

Eigenvalues of stochastic generators

Proof.

If P is a stochastic matrix and µ > 0, then A = µ(P − I ) is a generator, whose
eigenvalues are µ(λ− 1). Conversely, if A is a generator, then for
µ > maxj=1,...,n |ajj |, P = 1

µ (A + µI ) is a stochastic matrix and A = µ(P − I ).

λ λ− 1 µ(λ− 1)
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Later results The results from 1946

Complete description of Mn for n ≤ 5

Definition (Dmitriev and Dynkin, 1946)

A convex q-gon is called cyclic, generated by µ, if Q is the convex hull of the
points 1, µ, µ2, . . . .

Example

0

µ
µ2

µ3

µ4

1 = µ5

µ = e
2πi

5

0
1

µ

µ2

µ3

µ4

µ5

µ = 0.8e
4πi

7
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Complete description of Mn for n ≤ 5

Definition (Dmitriev and Dynkin, 1946)

A convex q-gon is called cyclic, generated by µ, if Q is the convex hull of the
points 1, µ, µ2, . . . .

Example

0

µ
µ2

µ3

µ4

1 = µ5
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5

0
1

µ

µ2

µ3

µ4
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Later results The results from 1946

Complete description of Mn for n ≤ 5

Theorem (Dmitriev and Dynkin, 1946)

For n ≤ 5, Mn is the union of all cyclic q-gons such that q ≤ n.

Theorem (Kolmogorov, Dmitriev and Dynkin, 1946)

The eigenvalues of an n × n nonnegative matrix A lie in the set %(A) ·Mn where
%(A) = maxj=1,...,n |λj | is the spectral radius of A.
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Complete description of Mn for n ≤ 5
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Later results The results from 1946

Complete description of Mn

Definition (Karpelevich, 1949, 1951)

A convex q-gon is called cyclic, if there exist a complex number µ and an integer

p ≤ q such that Q coincides with the convex hull of the system of points µme
2πir
p

where m = 0, 1, . . . and r = 0, 1, . . . , p − 1.

Example

0

µ

µeiπ

1−1

µ = 0.8e
2πi

5 , p = 2

0

µ

1

e
2πi

3

e
4πi

3

µ = 0.8e
2πi

5 , p = 3
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Later results The results from 1946

Complete description of Mn

Theorem (Karpelevich, 1949, 1951)

The set Mn is the union of all cyclic q-gons such that q ≤ n.

Theorem (Karpelevich, 1951)

The set Mn

• is symmetric with respect to the origin and contained in the unit circle,

• Mn ∩ {|z | = 1} consists of the points e
2πia
b where 0 ≤ a < b ≤ n,

• ∂Mn consists of the previous points and the arcs connecting them in circular
order; these arcs can be parametrized by a certain system of equations.
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Complete description of Mn

Theorem (Karpelevich, 1949, 1951)
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Theorem (Karpelevich, 1951)

The set Mn

• is symmetric with respect to the origin and contained in the unit circle,

• Mn ∩ {|z | = 1} consists of the points e
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b where 0 ≤ a < b ≤ n,
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Later results The results from 1946

Extremal eigenvalues

Definition
A number λ ∈ Mn is called an extremal eigenvalue if αλ 6∈ Mn for every α > 1.
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Later results The results from 1946

Extremal eigenvalues

Definition
A number λ ∈ Mn is called an extremal eigenvalue if αλ 6∈ Mn for every α > 1.

Question
Suppose that a stochastic matrix has an extremal eigenvalue on the segment
joining the points 1 and e

2πi
n . What are then the other eigenvalues? How does the

matrix look like?

0
1

e
2πi
n

e−
2πi
n

λ
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Later results The results from 1946

Extremal eigenvalues

Answer
Such a λ can be written in the form

λ = α + βe
2πi
n where α, β ≥ 0, α + β = 1.

Therefore,

(λ− α)n = βn

so the characteristic polynomial of the matrix is (x − α)n − βn. Thus, its
eigenvalues are λj = α + βεj where the εj are the nth roots of unity (i.e., the
eigenvalues are vertices of a regular n-gon). A stochastic matrix with such
eigenvalues is 

α β 0 0 0
0 α β 0 0

0
. . .

. . .
. . . 0

0 0 0 α β
β 0 0 0 α

 . 0
1

λ

α

β

e
2πi
n

e−
2πi
n
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Later results The results from 1946

Extremal eigenvalues

Theorem (Dmitriev and Dynkin, 1946)

If an n × n stochastic matrix has an extremal eigenvalue λ such that

λ ∈ Mn \Mn−1 and 2πp
n ≤ arg λ ≤ 2π(p+1)

n where 0 ≤ p ≤ n − 1, then the matrix
can be transformed to the following schematic form

p p + 1

0

0

0

0

0

0
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Later results The results from 1946

Extremal eigenvalues

Case of M3

1

e
2πi

3

e−
2πi

3

−1

Angle Equation of extremal roots (where α, β ≥ 0, α + β = 1)

(− 2π
3 ,

2π
3 ) (λ− α)3 = β3

( 2π
3 ,

4π
3 ) λ3 = α + βλ (prove!)

Á. Besenyei (ELTE Budapest) May 5, 2014 27 / 32



Later results The results from 1946

Extremal eigenvalues

Case of M4

1

e
πi
2

e
2πi

3

−1

e
4πi

3
e

3πi
2

Angle Equation of extremal roots (where α, β ≥ 0, α + β = 1)

(− 2π
4 ,

2π
4 ) (λ− α)4 = β4

(π2 ,
2π
3 ), ( 4π

3 ,
3π
2 ) λ4 = α + βλ

( 2π
3 ,

4π
3 ) (λ2 − α)2 = β2λ
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Later results The results from 1946

Extremal eigenvalues

Case of M5

1

e
2πi

5e
πi
2e

2πi
3

e
4πi

5

−1

e
6πi

5

e
4πi

3 e
3πi

2
e

2πi
5

Angle Equation of extremal roots (where α, β ≥ 0, α + β = 1)

(− 2π
5 ,

2π
5 ) (λ− α)5 = β5

( 2π
5 ,

π
2 ), ( 3π

2 ,
8π
5 ) λ5 = α + βλ

(π2 ,
2π
3 ), ( 4π

3 ,
3π
2 ) λ4 = α + βλ

( 2π
3 ,

4π
5 ), ( 6π

5 ,
4π
3 ) λ5 = α + βλ2

( 4π
5 ,

6π
5 ) λ(λ2 − α)2 = β2
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Later results The results from 1946

Nonnegative matrices

Theorem (Kolmogorov, Dmitriev and Dynkin, 1946)

The eigenvalues of an n × n nonnegative matrix A lie in the set %(A) ·Mn where
%(A) = maxj=1,...,n |λj | is the spectral radius of A.
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Later results The results from 1946

Nonnegative matrices

Theorem (Kolmogorov, Dmitriev and Dynkin, 1946)

The eigenvalues of an n × n nonnegative matrix A lie in the set %(A) ·Mn where
%(A) = maxj=1,...,n |λj | is the spectral radius of A.

Proof.
If A is irreducible, i.e., it is not similar to a block triangular matrix, then by
Perron’s results there is a positive eigenvector x ∈ Rn such that Ax = %x . Let X
be the diagonal matrix with diagonal entries Xjj = xj , then B := 1

%X
−1AX is a

stochastic matrix, since

X−1AX1 = X−1Ax = X−1%x = %1.

The eigenvalues of B are λj/% which lie in Mn, therefore λj ∈ %(A) ·Mn.
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Later results The results from 1946

Nonnegative matrices

Theorem (Kolmogorov, Dmitriev and Dynkin, 1946)

The eigenvalues of an n × n nonnegative matrix A lie in the set %(A) ·Mn where
%(A) = maxj=1,...,n |λj | is the spectral radius of A.

Proof.
If A is reducible, then A is similar to a block triangular matrix

A11 0 0 . . . 0
A21 A22 0 . . . 0
. . . . . . . . . . . . . . .
Ak1 Ak2 Ak3 . . . Akk


where A11, . . . ,Akk are irreducible. Each eigenvalue of A is an eigenvalue of some
Ajj , therefore they lie in the set %(Ajj) ·Mn ⊂ %(A) ·Mn.
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Biography Dmitriev

Some biographical notes

Nikolai Aleksandrovich Dmitriev (1924–2000)

• newspapers: young Kolya is a “phenomenon that appears once in a century”,

• enrolled in Moscow State University at the age of 14,

• later he was working at the Russian Federal Nuclear Center,

• Kolmogorov: “Why do you need those computers? You have Kolya Dmitriev,
don’t you?”,

• Andrei Sakharov (1921–1989, Nobel Peace Prize Laureate): “...perhaps the
only one among us with the sparks of God. You could think that Kolya is this
quiet, modest boy. But we all tremble before him, as if he were the highest
judge.”
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Biography Dynkin

Some biographical notes

Eugene Borisovich Dynkin (1924–)

• enrolled in Moscow State University at the age of 16,

• 1977–2012 professor at Cornell University,

• fundamental contributions to algebra and probability theory,

• The Eugene B. Dynkin Collection of Mathematics Interviews:
http://dynkincollection.library.cornell.edu/

• Seventy years in mathematics: from 28:50 Dynkin recounts the problem
http://www.youtube.com/watch?v=IW3QRmSviMI
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The End

Thank you for your attention!
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